Control of queueing networks in the large deviations limit

Adam Shwartz

Department of Electrical Engineering
Technion—Israel Institute of Technology
Joint work with Rami Atar, Anindya Goswami

Workshop on Optimization, Scheduling and Queues,
Honouring Gideon Weiss on his Retirement, June 2012
I. INTRODUCTION and MOTIVATION:
 Control of queueing networks - asymptotic analysis
 Parallel server model
 Scaled model, Processes and cost

II. Large Deviations and differential games
 Intuition
 “Derivation”

III. RESULTS
 The limit problem
 The game
 Queues, game, PDE
 Can we compute?
I. Introduction and Motivation

Control of queueing networks - asymptotic analysis
Real-life systems are becoming large, fast, complex. Optimization becomes critical, Unusual events dominate performance Yet exact results are scarce.

Our approach - asymptotic analysis as system becomes faster. We treat Markovian queues. In previous work (Atar, Dupuis, S) - the criterion was - length of exit time for a set. Here we consider a more general risk-sensitive criterion.
Parallel server model

I customer classes, J service stations,
$N_j \geq 1$ identical servers in station $j \in \mathcal{J} := \{1, 2, \ldots, J\}$.
Arrivals $E_i, i \in \mathcal{I} := \{1, 2, \ldots, I\}$ are Poisson λ_i
Service of customer i by server j is exponential $\mu_{ij} \geq 0$.
$\mu_{ij} = 0$ means server from station j
cannot serve class-i customers.

Now introduce a LLN (= large-deviations) scaling, and
a risk-sensitive cost
Scaled parallel server model

The “size” of the system is $n \in \mathbb{N}$, $n \to \infty$.
I customer classes, J service stations,
$N_j(n) \geq 1$ identical servers in station $j \in \mathcal{J} := \{1, 2, \ldots, J\}$.
$N_j = N_j(n)$ may increase (sub-linearly) with n.
Total number of servers $N(n) = \sum_j N_j(n)$, $\lim_{n \to \infty} N(n)/n = 0$.

Arrivals E_i, $i \in \mathcal{I} := \{1, 2, \ldots, I\}$ are Poisson $\lambda_i(n) = \lambda_i n$
Service of customer i by server j is exponential $\mu_{ij}(n) \geq 0$ and
 total processing capacity is $N_j(n)\mu_{ij}(n) = n \cdot \mu_{ij}$.
Thus arrival rates and per-station total service rate scale like n.
$\mu_{ij}(n) = 0$ means server from j cannot serve class-i customers.
I. Introduction and Motivation - the model

Scaled parallel server model

I customer classes, J service stations, arrival rates $\lambda_i(n)$, service rate $\mu_{ij}(n)$.

We control service allocation. An *allocation matrix* is in

$$U := \left\{ u \in \mathbb{R}_+^{I \times J} : \sum_{i \in I} u_{ij} \leq 1, j \in J \right\}. \quad (1)$$

$N_j(n) u_{ij}$ is the number of servers from station j allocated to serve class-i customers (not required to be integer - a server may work on more than one job.)
I. Introduction and Motivation - the model

Processes and cost

Denote by \(\Xi^n = (\Xi^n_i)_{i \in I} \) the number of class-\(i \) customers at \(t \). The scaled version is \(X^n_t = n^{-1} \Xi^n_t \), \(t \geq 0 \). The control process is \(U^n := \{ U^n_{ij} \} \).

The cost is defined through two Lipschitz, monotone increasing (componentwise) functions \(h, g \) where \(h \) is bounded. Each pair \(S = (U^n, X^n) \) induces a probability, so we can define (for a given \(T > 0 \)) a cost-to-go

\[
C^n(t, x, S) = \frac{1}{n} \log \mathbb{E} \left[e^n \left[\int_t^T h(X^n_s) ds + g(X^n_T) \right] \right].
\]

(2)

The value function is

\[
V^n(t, x) = \inf_S C^n(t, x, S), \quad t \in [0, T), \ x \in G^n.
\]

(3)
Implications of scaling and cost

\[C^n(t, x, S) = \frac{1}{n} \log E \left[e^{n \int_t^T h(X^*_s) ds + g(X^*_T)} \right]. \]

Since \(h, g \) are increasing, we penalize large queues.
Since \(n \to \infty \), only the largest values of the queues count, even if those occur with small probability.
But events with small probability occur (large deviations theory) by a change in the process statistics \((\lambda, \mu)\).
We thus need to control “against nature,” which introduces a change in statistics. These changes come “with a price”.
Thus we play a game against nature, and the cost function is a modification of our cost.
Large Deviations

Let A be a set of paths of the scaled queue process over $[0, T]$. There are functions $\ell^U, I^U(A)$ so that

$$P \{ X^n \in A \} \approx e^{-nl(A)}, \quad I(A) = \inf \left\{ \int_0^T \ell(\dot{\phi}(t)) \, dt : \phi \in A \right\}$$

Varadhan’s lemma = Laplace Principle states, for “each” U

$$\frac{1}{n} \log \mathbb{E} \left[e^n \left[\int_0^T h(X^n_s) \, ds \right] \right] \to \sup_{\phi} \left[\int_0^T h(\phi(s)) \, ds - \int_0^T \ell^U(\dot{\phi}(s)) \, ds \right].$$

Minimizing over U (process on left, function on right)

$$\inf_U \frac{1}{n} \log \mathbb{E} \left[e^n \left[\int_0^T h(X^n_s) \, ds \right] \right] \approx \inf_U \sup_{\phi} \left[\int_0^T h(\phi(s)) \, ds - \int_0^T \ell^U(\dot{\phi}(s)) \, ds \right]$$

which looks like a differential game.
III. Results

The limit problem

We relate the limit of V^n, as $n \to \infty$, to a PDE of Hamilton-Jacobi-Isaacs type.

Theorem

Given $t \in [0, T]$ and $x^n \to x$,

$$\lim_{n \to \infty} V^n(t, x^n) = V(t, x),$$

where V is the unique viscosity solution of (7) below.

Below we shall provide an additional interpretation of the limit V.
Notation: set $m_0 = \left((\lambda_i)_{i \in I}, (\mu_{ij})_{i \in I, j \in J} \right) \in M := \mathbb{R}_+^I \times \mathbb{R}_+^{I \times J}$.

Denote members of M as $m = \left((\bar{\lambda}_i)_{i \in I}, (\bar{\mu}_{ij})_{i \in I, j \in J} \right)$.

A member $m \neq m_0$ of M is a perturbed set of parameters.

Let $l(x) = x \log x - x + 1$ if $x \geq 0$ and $= \infty$ otherwise.

For $u \in U$ and $m \in M$, let

$$\nu(u, m) = \sum_i \bar{\lambda}_i e_i - \sum_{ij} u_{ij} \bar{\mu}_{ij} e_i$$ \hspace{1cm} (4)

$$\rho(u, m) = \sum_i \lambda_i l\left(\frac{\bar{\lambda}_i}{\lambda_i} \right) + \sum_{ij} u_{ij} \mu_{ij} l\left(\frac{\bar{\mu}_{ij}}{\mu_{ij}} \right),$$ \hspace{1cm} (5)

ν is the “mean drift” of the perturbed system under the control u

ρ is the “cost” of perturbing the system from the original parameter values.
Let G denote the positive quadrant and

$$H(p) = \inf_{u \in U} \sup_{m \in M} \left[\langle p, v(u, m) \rangle - \rho(u, m) \right], \quad p \in \mathbb{R}^I. \quad (6)$$

Let $I(x) = \{ i \in \mathcal{I} : x_i = 0 \}$ denote indices of “empty queues.”

Define the HJI equation (V_t is the derivative of V w.r.t. t, and DV the gradient of V w.r.t. x):

$$\begin{cases} V_t + H(DV) + h = 0 & \text{in } [0, T) \times G^o, \\ \langle DV(t, x), e_i \rangle = 0 & x \in \partial G, i \in I(x), \quad (7) \\ V(T, x) = g(x) & x \in G. \end{cases}$$

A solution to equation (7) is in the viscosity sense.
The game

Γ denotes the Skorohod map: prevents paths from exiting the positive quadrant.

Denote by u a path of controls, m a path of parameter values. v is the speed. The differential game has dynamics

$$
\psi(s) := \int_t^s v(u(r), m(r)) \, dr
$$

and $\phi = \Gamma(\psi)$. The cost is

$$
c(t, x, u, m) = \int_t^T \left[h(\phi(s)) - \rho(u(s), m(s)) \right] \, ds + g(\phi(T))
$$
Queues, game and PDE

The game has a value if minimizing over controls and then maximizing of parameters is the same as the reverse order.

Theorem

(i) The game has a value.
(ii) This value is the unique solution of the HJI equation (7).
(iii) The limits of the optimal costs of the stochastic problem equal the value of the game. Namely $x^n \rightarrow x$ implies

$$V^n(t, x^n) \rightarrow V(t, x).$$

Caveat: the definition of the game requires extra care and details.
Can we compute?

Consider the simple case $h = 0$ and $g(x) = \sum c_i x_i$. Define

$$\hat{\lambda}_i = \lambda_i (e^{c_i} - 1), \quad \hat{\mu}_{ij} = \mu_{ij} (1 - e^{-c_i})$$

Theorem

\[W \cdot T \leq V \leq W \cdot T + \gamma \cdot x \text{ where} \]

\[
W = \min_u \sum_i \left(\hat{\lambda}_i - \sum_j u_{ij} \hat{\mu}_{ij} \right) +
\]

Moreover, if $J = 1$ it is optimal to prioritize service according to the (larger) values of $\hat{\mu}_i$.
IV. What next?

Is the limit control good for the pre-limit? (AGS)
Compute for larger classes
Generalize model?
Moderate deviations (Atar, Biswas)